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Abstract

For the assessment of droplet evaporation by molecular dynamics simulations prescriptions for the calculation of the time dependent
number of droplet particles and of several space and time dependent hydrodynamic quantities like density, drift velocity and temperature
are given. Then two cases of adiabatic pressure jump evaporation are treated by molecular simulations using a Lennard-Jones potential.
First, a droplet wrapped by its vapour, and second, a bare droplet is brought into vacuum. In both cases evaporation takes place and
after a transition process a new droplet-vapour equilibrium is reached at lower temperature. Results are presented for the space and time
dependent hydrodynamic quantities as well as for the number of droplet particles as function of time.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Evaporation and condensation play an important role in
energy engineering, in chemical engineering as well as in
environmental processes. The use of liquid fuels requires
their evaporation outside or inside the combustion cham-
ber. Other frequently used evaporation processes include
most drying processes, cooling of water in cooling towers,
and cooling of gases by quenching. Evaporation and con-
densation occur in Rankine and refrigeration cycles as well
as in rectification columns. The scientifically interesting
aspect of evaporation and condensation processes is that
of combined heat and mass transfer and in most cases
droplets are involved. Presently there is still a certain ten-
dency in particular in drying technology to model these
processes in the framework of fluid mechanics with some
adjustable model parameters. We believe, however, that
considerations on the molecular scale are required for a full
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understanding and a physically sound modelling of these
processes.

A first molecular approach to describe evaporation and
condensation is that by Hertz, Knudsen and Volmer [1–3],
who assumed two half-sided Maxwell–Boltzmann (MB)
velocity distribution functions outgoing from and incoming
to the liquid–vapour interface. The outgoing MB-function
has the temperature of the liquid Tl and the density of the
saturated vapour q00(Tl) at temperature Tl. The incoming
MB-function has the temperature Tg and the density of
the gas qg. Whilst this model captures already essential fea-
tures of the physics of evaporation and condensation,
details concerning the gas phase, the liquid–gas interface
and the liquid phase remained open and deserve more
detailed studies. Such studies were performed since about
1960 according to the available theoretical and computa-
tional possibilities.

First, the gas phase was studied by using the kinetic the-
ory of gases [4] which allows assessing collisions between
the gas molecules. Interesting findings in case of evapora-
tion into vacuum [5] are that about 15% of the evaporated
molecules are backscattered to the surface by collisions
with other evaporated molecules and that the kinetic
temperature in the gas is considerably lower than at the
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evaporating surface. This decrease of the kinetic tempera-
ture is easily explained as the temperature is the kinetic
energy of the molecules with respect to drift velocity and
not with respect to some laboratory coordinate system.
The crucial questions with this approach are the initial
and the boundary conditions of the velocity distribution
function, which are usually modelled as in the Hertz–
Knudsen approach as half-sided MB-functions with
assumed densities and temperatures.

Regarding the liquid–vapour interface in equilibrium,
molecular simulations and theories [6–8] showed for a pla-
nar interface of a pure liquid that the density from the
liquid to the vapour decreases monotonically and that the
interface becomes broader with increasing temperature.

In the next step also evaporation processes from a pla-
nar surface were studied by molecular dynamics (MD)
[9–12] which is thought to be the key-methodology to val-
idate the assumptions of kinetic theory. In the work of
Lotfi [10] steady-state evaporation was considered ranging
from maximum evaporation rates for evaporation into vac-
uum to small evaporation rates in near-equilibrium. The
heat required for evaporation was supplied to the liquid
by thermostating the bulk some molecular diameters below
the onset of the interface at a prescribed temperature Tl.
With other words, the heat of evaporation was supplied
to the system by coupling the bulk liquid to a heat bath.
The most interesting results are described in the following.
(a) The density profile changes only marginally in compar-
ison with the equilibrium profile even in case of evapora-
tion into vacuum. (b) At low temperatures, i.e. for Tl/
Tc � 0.55 with Tc being the critical temperature, the thick-
ness of the interface is small and the temperature remains
constant from the liquid through the interface till the
beginning of the intrinsic vapour. As a consequence, the
velocity distribution function of the vapour molecules close
to the interface is in agreement with the Hertz–Knudsen
assumptions. (c) With increasing temperature, the interface
becomes broader and for the case of strong evaporation the
temperature drops down already in the interface. At the
highest temperature investigated, i.e. for Tl/Tc � 0.85
the temperature decreases for strong evaporation already
in the uppermost layers of the liquid which means that
the Hertz–Knudsen model cannot be applied there any
longer. (d) Further interesting results concerning the flux
of the evaporated particles, the heat flux, the increase of
the drift velocity from the liquid through the interface to
the vapour and the details of the temperature profiles can
be found in the original source [10].

Most evaporation and condensation processes, however,
occur via droplets. This inheres non-steady-state or tran-
sient processes. Moreover, contrary to the above consid-
ered steady-state evaporation, the heat required for
droplet evaporation is not delivered to the liquid from a
heat bath but must either be supplied by the liquid droplet
itself or by the surrounding gas or by both. One example is
the cooling of water in a cooling tower, where warm drop-
lets evaporate partially; the heat of evaporation is supplied
partly by the droplet and the droplet cools down. An other
extreme example is droplets in a combustion process, where
the heat of evaporation is supplied by the hot gas in the
combustion chamber and the droplets evaporate com-
pletely. Besides these two cases there are several different
cases as e.g. the evaporation in spray drying. Hence,
according to different initial and different boundary condi-
tions there is a variety of transient processes of droplet
evaporation. Some of these cases can be treated by apply-
ing the Hertz–Knudsen concepts of kinetic theory of gases
and interesting work has been done into that direction [13],
but this methodology might become cumbersome because
the droplet changes size, temperature and in case of mix-
tures also composition. Other cases like evaporation in
combustion chambers can presumably not at all be treated
in this way because the droplet is likely to be heated up to
temperatures close to the critical, where Lotfi [10] has
shown the breakdown of the Hertz–Knudsen concept.
Hence, it is quite natural to use molecular dynamics simu-
lations also to study the evaporation of droplets. Quantities
of interest are e.g. the density profile, the temperature pro-
files in radial and tangential direction, the drift velocity,
and the heat and mass flux depending on different initial
and boundary conditions. In the case of mixtures which
occur e.g. in spray drying particular interest lies also in
the concentration profiles and the mass transport of the
evaporating component inside the droplet.

At this point it is helpful to introduce the cut and shifted
Lennard-Jones potential using the cut-off radius rc

uðrÞ ¼ uLJðrÞ � uLJðrcÞ for r < rc; ð1aÞ
¼ 0 for r > rc; ð1bÞ

where uLJ is the usual Lennard-Jones (LJ) potential

uðrÞ ¼ 4e½ðr=rÞ12 � ðr=rÞ6�. ð2Þ

Throughout this paper reduced temperatures and reduced
particle densities are used according to T* = kT/e and
q* = qr3. Moreover, the time unit is s = (mr2/e)1/2 and
the simulation time steps are measured as Dt* = Dt/s. For
convenience, the stars are omitted where no confusion
can occur. Most frequently, the cut-off radius is chosen
to be rc = 2.5 and we simply call the corresponding cut
and shifted LJ potential LJ2.5. The vapour–liquid phase
equilibria of the non-confined LJ2.5 system have been dis-
cussed already in the literature [8,14–16]. We want to point
out in particular that the critical temperature of the LJ2.5
fluid is T �

c ¼ 1:085 [14], which is remarkably lower than
that of the LJ fluid without cut-off found to be T �

c ¼ 1:31
[14,17]. An estimate for the triple point temperature T �

tr

can be made on the basis of real argon, for which
Ttr = 83.80 K and Tc = 150.687 K, and hence Ttr/
Tc = 0.556. Assuming the same ratio yields T �

tr ¼ 0:60 for
the LJ2.5 fluid. Moreover, because of the considerably low-
er critical temperature of the LJ2.5 fluid the coexistence
curve properties of the LJ2.5 fluid are remarkably different
[8,14–16] from those of the LJ fluid [14,17] at the same
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reduced temperature T*. In particular, the saturated
vapour densities of the LJ2.5 fluid are higher by a factor
of 3 than those of the LJ fluid in a large temperature range
of interest.

Before considering evaporation of liquid droplets, an
understanding of droplets in equilibrium is necessary.
The first molecular simulation of liquid droplets in equilib-
rium seems to be that of Rusanov and Brodskaya [18]. A
milestone was then the MD study of liquid drops by
Thompson et al. [19]. In this work the atoms interact with
the LJ2.5 potential and the simulations were performed at
either constant energy or constant temperature. The quan-
tities calculated at different temperatures and for different
droplet sizes are the density profile q(r), the normal and
tangential components of the pressure tensor pN(r) and
pT(r), the surface thickness, the equimolar radius Re

and the surface tension c; a detailed discussion on the cal-
culation of the surface tension is included.

There are two findings in the Thompson et al.�s work
[19] which are of particular interest for evaporation studies.
One finding is that the equilibrium gas densities surround-
ing the droplets are considerably higher than the saturated
vapour densities of the LJ-fluid without cut-off [17] with
differences ranging up to an order of magnitude. One rea-
son already mentioned is that the saturated vapour densi-
ties of the LJ2.5 fluid are higher by a factor of 3 than
those of the LJ fluid in the temperature range considered.
An other reason is that according to the Kelvin equation
the vapour pressure and hence also the saturated vapour
density increases for a drop. An other important finding
of the Thompson et al.�s work [15] is that rather long equil-
ibration periods are needed.

After the very careful simulation studies on droplets in
equilibrium and the evaporation from a plane surface,
MD-simulations on the evaporation of droplets were made
by other groups. The first paper known to us is that of
Long et al. [20]. These authors considered a LJ2.5 droplet
surrounded by its vapour in a box at temperature
T* = 0.65. In order to achieve evaporation, those molecules
which reached the boundary regions of the box were heated
up there to the temperature T* = 1.00. Besides several pic-
tures showing the droplet during evaporation the main
quantitative result of this paper is that the droplet diameter
is a linear function of the evaporation time. In a subsequent
paper [21] of the same group two topics were addressed.
First, it was shown for a pure LJ2.5 fluid that the number
of droplet particles as function of evaporation time
obtained with initially N1 droplet molecules and those
obtained with initially N2 molecules agree by appropriate
scaling. Second, the vaporization of a liquid oxygen drop
into a hydrogen or a helium environment was studied using
between 5000 and 10,000 oxygen molecules and a total
number of molecules which is approximately four times
higher. The initial configurations were achieved by equili-
brating the droplet and the environment separately and
then combining the results. The oxygen droplet was at sat-
uration at 100 K and the hydrogen or helium environment
at 200 or 300 K and pressures up to 20 MPa. During the
evaporation process the systems were kept at the environ-
mental pressure. Moreover, as heat is transferred to the
droplet the gas molecules were heated up to the initial envi-
ronmental temperature in the boundary regions of the box
as before. Quantitative results are the number of molecules
in a droplet, the droplet temperature, and the oxygen mole
fraction as function of the radial distance from the droplet
center, all as functions of time. Much emphasis is put on
the different behaviour of the droplet at subcritical and
supercritical pressures. At subcritical pressures the droplet
remains spherical and retains a distinct temperature profile
throughout the entire vaporization process. In contrast, at
supercritical pressures the droplet vaporizes in a cloud-like
manner with vanishing surface tension. The latter was
determined by an ad hoc estimation based on the averaged
attractive force on the drop particles. Two additional
papers of the same group review existing results and pres-
ent additional atomisation phenomena [22] and deal again
with scaling [23].

In an other paper on droplet evaporation Bhansali et al.
[24] studied a LJ system forming a drop and its surround-
ing vapour till equilibrium was achieved at a prescribed
temperature. Then they increased the prescribed tempera-
ture and allowed the system to equilibrate at this higher
temperature. In this manner they achieved a series of
drop-vapour equilibria at five temperatures and recorded
equilibrium properties like density profiles, pressures and
surface tensions. Unfortunately little information about
the intrinsic evaporation process is given.

The concepts of Long et al. [20] were taken up again by
Walther and Koumoutsakos [25] who investigated the sub-
critical evaporation of mostly LJ2.5 droplets into their own
vapour. One of the aims of this work was to extend the
MD-algorithms to large particle numbers. This is achieved
with an ‘‘adaptive tree data structure’’ for the construction
of the neighbor lists. Actually, droplet evaporation simula-
tions with initially up to 51,105 liquid and 105,480 vapour
particles are reported. The systems were prepared such that
initial configurations were taken from fcc lattices with
liquid and vapour densities corresponding to real bulk
argon and a droplet is cut from the lattice into a spherical
shape. This initial configuration is said to have been equil-
ibrated at a subcritical temperature T �

l ¼ 0:83 over 5000–
10,000 time steps of length Dt* = 0.005 which the present
authors consider as a remarkably short equilibration per-
iod. Thereafter, the vapour was heated up outside a sphere
being some distance away from the drop surface to the
temperature T1 = 3Tl. The droplet then started to evapo-
rate. Reported results are density and temperature profiles,
droplet diameters and evaporation coefficients. In the pres-
ent authors opinion the real merit of this paper is the devel-
opment of the adaptive tree data structure. Regarding the
physical considerations, however, there are points which
are not easy to understand. The first is the preparation
and equilibration of the droplet. As the initial vapour den-
sity was taken as the saturated vapour density of real bulk
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argon it is according to the above discussion of previous
findings [8,15–17] at least three times too low for a LJ2.5
droplet in equilibrium with its vapour. As the initial num-
ber of vapour particles was between two and six times
higher than that of the droplet particles, more than the
available droplet particles would have been needed to
equilibrate the system. Hence, as the vapour density was
considerably below saturation, the droplet should have
started to evaporate already without being heated by the
vapour. With this background it is rather difficult to under-
stand why evaporation of the LJ2.5 droplet is reported to
start only at T* = 1.16 which is higher than the critical tem-
perature T �

c ¼ 1:085 of the LJ2.5 fluid [14–16]. A potential
explanation for this high evaporation temperature could be
the rather unconventional definition of the ‘‘temperature’’
in this paper which was defined as the kinetic energy in
the laboratory system without taking into account the drift
velocity. The latter, however, can become very high in the
vapour and in the interface during evaporation [10].
Finally, even if this temperature definition problem can
be resolved, the fact remains that evaporation was driven
simultaneously by the vapour density being far below the
saturation density as well as by the heat transferred to
the drop. Whilst such ‘‘mixed cases’’ occur frequently in
technical processes it seems rather difficult to draw unique
conclusions for modeling from such case studies.

The last and most recent MD-study on evaporation of
droplets known to us is that by Consolini et al. [26]. They
investigated the evaporation of an initially pure droplet of
xenon into an ambient vapour of nitrogen at subcritical
and supercritical conditions. Initial subcritical state condi-
tions are for the drop T = 165 and q = 2600 kg/m3 and for
the ambient gas 330, 650 and 1030 K, respectively, and
q = 8.5 kg/m3. The study is similar to that of Kaltz et al.
[21] where also a cold droplet was put into hot vapour with
the difference that Kaltz et al. heated up the vapour mole-
cules whenever they reached the boundaries of the simula-
tion box whilst Consolini do not transfer additional energy
to the system. The MD results are shown in essence to be
independent of the droplet and system sizes considered,
which confirms earlier findings of Kaltz et al. [21] for evap-
oration of a pure fluid into its own vapour. An other inter-
esting finding is that at subcritical conditions the droplet
tends to stay spherical or to become spherical for initial
non-spherical shape. A certain difference with respect to
Kaltz et al. [21] is in the history of the droplet temperature
at subcritical conditions. Whilst Kaltz et al. found contin-
uous increase of the drop temperature, the present authors
find a certain saturation temperature; this difference is
likely to be caused by the fact that Kaltz et al. kept the
temperature constant at the boundaries and hence added
continuously energy to the system. For the supercritical
case the droplet does not return to the spherical shape
and its temperature increases continuously during the
‘‘vaporization’’ process.

Summarizing we can say that the available MD studies
on evaporation of droplets have given some interesting
results. They also show, however, as could have been
expected that the results depend strongly on the initial
and boundary conditions and a variety of cases remain to
be explored. Of course, there was some interest to arrive
as soon as possible at the evaporation of a liquid droplet
into an ambient vapour of different molecules. The simpler
case, however, is that of evaporation of a droplet in a single
component system. After the above discussion we believe
that several phenomena remain to be investigated for the
single component case in more detail.

Several initial and boundary value problems are con-
ceivable in a single component system for evaporation of
a droplet. For convenience in terminology we distinguish
whether a droplet is in equilibrium with its vapour—we call
this a wrapped droplet—or whether a sphere has been sim-
ply cut out from a homogeneous liquid—we call this a bare
droplet. Without being complete, we can distinguish the
following cases. Case 1: A wrapped droplet is put together
with its vapour into vacuum. Case 2: A bare droplet is cut
out and put into vacuum. Cases 1 and 2 have some physical
similarity and are summarized as ‘‘adiabatic pressure jump
evaporation’’. Case 3: Start from a cold wrapped droplet
and heat the vapour in some distance from the droplet
(case of Long et al. [20]). Case 4: Put a cold bare drop-
let into hot vapour and add energy to the system. This case
was considered by Kaltz et al. [21] but for vapour mole-
cules being of different type than the liquid molecules at
the beginning of the simulation. Cases 3 and 4 have some
physical similarity and are summarized as ‘‘continuous
heat transfer evaporation’’. Case 5: Put a cold bare droplet
into hot vapour without adding energy to the system. This
case was considered by Consolini et al. [26] but for vapour
molecules being of different type than the liquid molecules
at the beginning of the simulation. Case 6: Consider a
liquid drop surrounded by non-saturated vapour of equal
temperature and heat up the vapour which is the ‘‘mixed’’
case considered by Walther and Koumoutsakos [25].

It is the purpose of this paper to extend the study of
Lotfi [10] for steady-state evaporation from a plane surface
to the transient evaporation of drops in single component
systems. In particular, we will study here the ‘‘adiabatic
pressure jump evaporation’’ corresponding to Cases 1
and 2. The ‘‘continuous heat transfer evaporation’’ corre-
sponding to Cases 3 and 4 will be the subject of a subse-
quent paper. The studies on adiabatic pressure jump
evaporation can be considered as a first model for describ-
ing the cooling of water in cooling towers.

2. Model and properties definitions

The model fluid considered here is the cut and shifted
Lennard-Jones fluid with a potential cut-off distance
rc = 2.5r, which we call LJ2.5.

The definitions of the potential have been given above in
Eqs. (1a), (1b) and (2). The LJ2.5 potential is chosen (1)
because the potential has to be cut off in any case in the
molecular dynamics simulations, (2) long-range corrections
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are tedious for spherical drops, (3) most droplet simula-
tions have been done for that potential, and (4) vapour–
liquid phase equilibria of the non-confined LJ2.5 system
have been discussed already in the literature [8,14–16]
and were shortly summarized in Section 1.

The preparation of the simulation runs requires detailed
descriptions depending on different initial and boundary
conditions. The common starting point is to prepare a
homogeneous liquid at prescribed temperature Tl and den-
sity ql by placing initially all atoms at the sites of a face cen-
ter cubic (FCC) lattice in a cube of box length Ll. Usual
numbers of atoms consistent with the fcc lattice are
Nc = 32, 108, 256, 500, 864, 1372, 2048. Then an equilibra-
tion run is performed at NVT conditions over 20,000 time
steps of length Dt* = 0.005 which is used throughout the
paper. Assuming for m, r and e the usual parameters for
argon Dt* = 0.005 corresponds to 10.75 fs. In the same
way a homogeneous vapour is prepared in a separate sys-
tem at Tv and qv. Traditionally, we use for the integration
of the equations of motion the fifth order predictor correc-
tor algorithm presented by Gear [27] and recommended by
Haile [28,29]. The temperature is kept constant by rescaling
the velocities of all particles such that the total kinetic
energy Ekin remains constant.

In a next step, a spherical droplet is created by cutting
out the atoms contained in the largest possible sphere of
the ‘‘liquid’’ cube. As the volume of the sphere is (4p/3)
(Ll/2)

3 the average number of initial particles in the droplet
is N0 = (p/6)Nc = 0.524Nc. The particles of the liquid drop-
let retain their positions with respect to the center of the
sphere and also their velocities. This droplet is then placed
depending on the case study either into the center of an
empty box or into the center of a box with vapour. In
the latter case the vapour molecules have to be removed
from the sphere occupied by the droplet. The vapour can
have the same or a different temperature as the liquid
depending again on the case studied.

After the system has been prepared so far, it is helpful
for the following to define whether an atom belongs to
the droplet or to the vapour. For that purpose, several def-
initions are available in the literature [19–21,24,25,30]. In
essence, three groups of definitions can be distinguished,
two of which were given by Thompson et al. in [19] as
‘‘Cornell’’ and ‘‘Oxford’’ definition and the third is that
of Rein ten Wolde and Frenkel [30].

In the ‘‘Cornell’’ definition a molecule j is said to be
within the droplet at the time t provided that the condition
rij 6 Rcl was fulfilled, where molecule i is known to be in
the cluster and Rcl is a suitably chosen length. The algo-
rithm is entered with i = 1, where molecule 1 is the one
closest to the last known position of the center of mass
of the droplet and is thus known to be ‘‘in the droplet’’.
In the first step we look for those molecules j for which
rij obeys rij 6 Rcl. Having located the molecules in the first
shell, the sorting procedure starts in the second step from
any of the molecules in the first shell and looks for mole-
cules k connected to any of the j molecules with rjk 6 Rcl.
Those molecules k which have not yet been counted before
as belonging to the droplet form the second shell. This pro-
cedure is continued until one does not find any more mol-
ecules connected to the droplet. The number of the
particles belonging to the droplet is Nd and the center of
the droplet is calculated. In practice Rcl was set equal to
1.542r.

In the ‘‘Oxford’’ definition molecule i is taken to be in
the droplet at time t if there are at least nc molecules of type
j such that rij obeyed rij 6 Rcl, with Rcl = 2.5r. The number
nc is varied from 7 to 4 as the temperature rose from
T* = 0.63–0.8; these numbers are significantly less than
the mean number of molecules expected to be in a sphere
of radius 2.5r in the uniform liquid.

The definition of Rein ten Wolde and Frenkel [30] is
similar to the ‘‘Oxford’’ definition with the differences that
Rcl = 1.5 which corresponds to the first minimum in the
radial distribution function of the liquid and that the num-
ber nc is taken to be 4. It contains still a second criterion
which is important for the study of nucleation but does
not seem to us to be very relevant for evaporation and
hence is neglected here. Henceforth, we understand as
‘‘Amsterdam’’ definition: a particle j is a nearest neighbor
to i if rij 6 Rcl = 1.5r and particle i belongs to the droplet
if it has at least nc = 4 nearest neighbors.

From a physical point of view the Cornell definition is
the most satisfying but it is computationally most intensive.
It might be necessary to use that definition in case that the
droplet completely disappears. For pressure jump evapora-
tion, however, where the droplet survives the Amsterdam
and Oxford definition seem to be equally well suited. Here,
we will mainly work with the Amsterdam definition but
compare the result in one case also with the Cornell
definition.

Using such a definition it is possible to label at a given
time each particle as belonging to the droplet (d) or to
the vapour (v) and to count the number of atoms in the
droplet Nd. For the following, it is helpful to define the cen-
ter of the drop rcd as

rcd ¼ ð1=NdÞ
X
id

rid; ð3Þ

where the summation goes over all droplet particles. More-
over, we will also use the notion of the center of mass of the
whole system

rcm ¼ ð1=NÞ
X
i

ri. ð4Þ

Keeping in mind that the number of atoms in the drop-
let Nd is a function of time t, Nd(t), a net particle evapora-
tion flux j can be defined as net number of particles which
pass from the droplet to the vapour per unit surface area
and a specified time interval Ds

jðtÞ ¼ ½N dðtÞ � N dðt þ DsÞ�=ADs; ð5Þ
where A is the droplet surface area. The time interval Ds
has to be specified with some care. On the one hand Ds
should be larger than the integration time step Dt in order
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to avoid a sensitivity to instantaneous fluctuations and on
the other hand it should allow a certain time resolution. In
the present paper we will not calculate j(t) because the
droplets considered consist only of some hundred particles
and hence statistics are not sufficiently accurate in order to
calculate j(t). Eq. (5) is given here for methodological
completeness.

If the molecules belonging to the droplet are well
defined, it is helpful for all further evaluations to fix the
center of the cubic box in the center of the droplet rcd. In
addition to the number of particles in the droplet Nd(t)
and the evaporation flux j(t), quantities of interest are the
local density q, the radial drift velocity vD, the total kinetic
energy of the system Ekin, the mean kinetic energy per par-
ticle ekin, as well as the radial temperature Tr, the tangential
temperature Tt and the total temperature T. Note that the
quantities q, vD, ekin, Tr, Tt, and T all are functions of the
radial distance r from the center of the drop and of the time
t. We assume that the droplets remain spherically symmet-
ric during the evaporation process which at least seems to
hold on a coarse grained time scale, i.e. by averaging over
several hundreds or thousands time steps of length Dt.

The density profile q(r) in the droplet, the vapour–liquid
interface and the surrounding vapour was calculated up to
1/2Ll, i.e. up to half the box length, by determining time
averaged numbers of atoms in spherical shells. Let the radii
of the spheres be r1, r2, . . . , rn�1, rn, . . ., the number of parti-
cles in the nth shell be Nn, its time average be hNni, and the
volume of the nth shell be Vn, then the local density q(r) is
given by

qðrÞ ¼ hNni=V n ð6Þ
and assigned to the radius r

r ¼ ½1=2ðr3n � r3n�1Þ�
1=3. ð7Þ

The time averaging periods depend on whether the system
was in equilibrium or in a transient state and will become
clear in the context of the particular case.

Using that shell concept, also the drift velocity and the
temperatures were determined. For the drift velocity we
assume for reasons of spherical symmetry that it only has
a radial component. Let us start with considering some
particle i which has position ri and velocity vi with both
quantities being vectors. Now let us decompose the velocity
vi into a radial velocity vir and a tangential velocity vit. This
can be done by introducing a radial unit vector er defined
by ri/ri with ri = jrij. Therewith, the radial velocity vir and
the tangential velocity vit are given as

vir ¼ ðvi � erÞer; ð8Þ
vit ¼ vi � vir. ð9Þ

Moreover, we need the radial velocity component

vir ¼ ðvi � erÞ; ð10Þ
which can be positive or negative. Now, let us consider all
particles in in the nth shell Therewith the radial drift veloc-
ity vD(r) in the nth shell is given as
vDðrÞ ¼ 1=Nn

X
in

vin;r

* +
; ð11Þ

where the summation goes over all particles in in the nth
shell and h� � �i denotes appropriate time averaging. We
note, that vD(r) can be positive or negative.

With this notation the instantaneous total kinetic energy
of the system is given by

Ekin ¼ ðm=2Þ
X
i

v2i ð12Þ

and the mean kinetic energy per particle ekin(r) in the nth
shell is given by

ekinðrÞ ¼ ðm=2NnÞ
X
in

v2in

* +
; ð13Þ

where the summation again goes over all particles in in the
nth shell and h� � �i denotes appropriate time averaging.

The temperature is given according to the kinetic theory
of gases via the squared random velocity which is obtained
from the actual velocity by subtracting the drift velocity.
Hence, we define the random part vig of the velocity vi as

vig ¼ vi � vDer ð14Þ
and the random part vih of the radial velocity vir as

vih ¼ vir � vDer. ð15Þ
Therewith, the ‘‘radial‘‘ temperature Tr(r) is given as

T rðrÞ ¼ ðm=kÞ 1=Nn

X
in

v2in;h

* +
; ð16Þ

which can be rewritten by using Eqs. (15) and (11) as

T rðrÞ ¼ ðm=kÞ 1=Nn

X
in

v2in;r

* +
� v2D

" #
; ð17Þ

if the same time averaging interval h� � �i is used in Eqs. (11)
and (17). Similarly, the ‘‘tangential’’ temperature Tt(r) is
given as

T tðrÞ ¼ ðm=2kÞ 1=Nn

X
in

v2in;t

* +
ð18Þ

and the total temperature T(r) as

T ðrÞ ¼ ðm=3kÞ 1=Nn

X
in

v2in;g

* +
; ð19Þ

where the summation goes over all particles in in the nth
shell and h� � �i denotes appropriate time averaging. Com-
bining Eqs. (17)–(19) we get

T ¼ 1=3T r þ 2=3T t. ð20Þ

Finally, from Eqs. (13), (14) and (19) we get the relation
between the temperature T and the kinetic energy per par-
ticle ekin as

ð3=2ÞkT ¼ ekin � ðm=2Þv2D. ð21Þ
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3. Equilibration of the droplet with its vapour

Whilst the main purpose of this paper is the study of
evaporation, there are two cases, Cases 1 and 3, in which
the evaporation shall start from a droplet in equilibrium
with its vapour which we call a wrapped droplet. Hence,
it seems appropriate to discuss the preparation of a
wrapped droplet be sure that the intended initial condition
has been achieved. We remind that such studies have
already been made [19,31] and the message is that special
attention has to be paid to the preparation and equilibra-
tion of the droplets.

Here, we consider as an example a usual, non-optimized
equilibration to obtain a droplet in equilibrium with its
vapour at T = 0.80. For this purpose we may start with a
NVT simulation of a homogeneous liquid in a cubic box
with periodic boundary conditions for N = 1372 particles
at a density q = 0.80 which is the saturated liquid density
of the full LJ system [17]; the liquid box length is
Ll = 11.97. Next, we run a NVT simulation of a homoge-
neous vapour for 108 particles at a density q = 0.010 which
is somewhat higher than the saturated vapour density of
the full LJ system found to be q00 = 0.006; the vapour
box length is Lv = 22.10. Each of these runs is performed
over 20,000 time steps. Next, a spherical droplet is created
by cutting out the atoms contained in the largest possible
sphere of the liquid cube which yields 724 ‘‘liquid’’ parti-
cles; the radius of this sphere is RL = Ll/2 = 5.98. The same
sphere is then cut out from the center of the vapour cube
which leaves 95 ‘‘vapour’’ particles in the remaining vol-
ume (vapour cube minus liquid sphere). The liquid and
vapour are then merged in the vapour box by placing the
spherical liquid droplet into the empty sphere in the center
of the vapour box. In those simulation codes in which the
box length is taken as unit length, the remaining vapour
molecules retain their positions and velocities, whilst for
the liquid molecules a rescaling is necessary for the reduced
positions x = r/L according to

xi;new ¼ 0:5þ ðxi;old � 0:5ÞðLl=LvÞ; ð22Þ
and similarly for the reduced velocities w = (v/L)(Dt/r)
according to

wi;new ¼ wi;oldðLl=LvÞ. ð23Þ

At this point we have to repeat that the saturation prop-
erties of the LJ2.5 fluid are different from those of the LJ
fluid. At T = 0.80, we have for the full LJ fluid q 0 = 0.80
and q00 = 0.006 [17], whilst for the LJ2.5 fluid the corre-
sponding values are q 0 = 0.73 and q00 = 0.020 [16]. Hence,
in the above prepared merged liquid vapour system the
vapour density is too low by a factor of 2 whilst the liquid
density is about 10% too high. As a consequence, equilibra-
tion of the merged system means now already evaporation.

In these equilibration runs, the total kinetic energy of
the system Ekin is kept constant by rescaling the velocities
with Ekin being fixed to 3/2NkT with T = 0.8. An interest-
ing point is now to consider the mean kinetic energy per
particle ekin(r) in different concentric shells around the cen-
ter of the droplet. The simulation shows that at the begin-
ning of the equilibration the mean kinetic energy per
particle is in the liquid drop lower than Ekin/N and in the
vapour phase higher than Ekin/N. The reason for this
behavior is that the flow of evaporating particles has a drift
velocity which strongly contributes to the kinetic energy. In
this connection we repeat our warning that the kinetic
energy of a non-equilibrium system must not be taken as
measure for the temperature. The correct calculation of
the temperature requires subtraction of the drift velocity
from the particle velocities as in Eqs. (14) and (19). In gen-
eral, after a certain equilibration time, the mean kinetic
energy per particle in the shells should become constant
throughout the system and equal to Ekin/N = 3/2kT.

During the equilibration there are several quantities to be
observed in order to decide whether the system has reached
equilibrium. Frequently it is said that a stable local density
profile according to Eq. (6) has to be reached. This is true
with the addition that the most sensitive part of the density
profile is the vapour density remote from the drop which
needs the longest time to arrive at a stable value. In our par-
ticular example we obtained in the center of the droplet a
‘‘liquid’’ density ql = 0.74 and in the vapour qv = 0.030 with
the averaging done from time step 75,000 to time step
85,000. We note that the vapour density outside the curved
droplet is higher than the saturated vapour density for the
non-confined LJ2.5 system being q00 = 0.020, whilst the
droplet density agrees with the saturated liquid density
q 0 = 0.73 within the simulation uncertainties. A second cri-
terion concerns the mean kinetic energy per particle in the
shells ekin(r) which should become spatially constant and
equal to 3/2kT. A third criterion is the mean displacement
xmean of the particles from the center of mass

xmean ¼ ð1=LvÞ 1=N
X
i

ðri � rcmÞ2
" #1=2

. ð24Þ

In the particular example we observed that xmean started
with 0.27, increased after 75,000 time steps Dt up to 0.36
and thereafter oscillated between this value and 0.34.

After all, the statement remains that the preparation of
the wrapped droplet requires some care and remarkably
long simulation runs.

4. Adiabatic pressure jump evaporation studies

Pressure jump evaporation in a general sense means that
for a system containing liquid and eventually vapour the
pressure is suddenly decreased and as a consequence the
liquid evaporates [32]. Several initial and boundary condi-
tions are conceivable. Here two related cases will be studied
in which no energy is transferred to the system after the
pressure jump, hence we call them adiabatic pressure jump
evaporation studies. First a wrapped droplet together with
its vapour is put into vacuum, second a bare droplet is put
into vacuum.
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Fig. 1. Reduced local density q* as function of the reduced distance r/r
from the droplet center for different time periods for evaporation of a
wrapped droplet by expansion of the volume (L2/L1 = 1.5). (—d—) initial
equilibrium, (—,—) averaged over time steps 6001–8000 after onset of
evaporation, (—j—) averaged over time steps 15,001–25,000 after onset
of evaporation.
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4.1. Evaporation of a wrapped droplet

The starting point is a droplet in equilibrium with its
vapour. The system consists of 819 particles in a box of
L1 = 22.10 and has been equilibrated at T = 0.80 as has
been described in Section 3. This system was put into a lar-
ger box which was initially empty. The larger boxes have
box lengths L2 with L2/L1 = 1.5 and L2/L1 = 2.0. First
we consider the case L2/L1 = 1.5 in detail, thereafter we
report some results for L2/L1 = 2.0. We remind that plac-
ing the smaller box into the larger box requires in a code
where the box length is taken as unit length again position
and velocity rescaling according to Eqs. (22) and (23).

The behavior which we expect is that the system expands
into the larger volume and part of the droplet will evapo-
rate. In order to leave the potential energy well of the drop-
let the particles need energy. As the system is treated
adiabatically, this energy must be supplied from the total
kinetic energy. This means that the system temperature will
go down and consequently the density of the liquid droplet
will increase and the density of the vapour phase will
decrease. After a certain transition time the system should
find a new equilibrium at a lower temperature.

As a check we estimated the temperature T2 in the new
equilibrium state on the basis of the conservation of
energy. The initial system indexed with 1 has N particles
in a box of volume V 1 ¼ L3

1 at temperature T1 = 0.80 and
its total energy is U1. Now we assume for simplicity that
at any temperature T the liquid drop has the density
q 0(T) and the internal energy u 0(T) of the saturated liquid
and the surrounding vapour has the corresponding quanti-
ties q00(T) and u00(T) of the saturated vapour of the LJ2.5
fluid. These quantities are known from [16]. Then we can
calculate on the basis of the conservation of mass and
energy the equilibrium state in the larger volume V 2 ¼ L3

2.
With this procedure we found for L2/L1 = 1.5 the new
equilibrium temperature T2 = 0.703 and for L2/L1 = 2.0
the new equilibrium temperature T2 = 0.640.

4.1.1. Simulation results for L2/L1 = 1.5

The preparation of the system in its initial equilibrium
state in the box with length L1 (L1 = 22.10) has been dis-
cussed in Section 3. Then this system is placed into the lar-
ger box with length L2 (L2 = 33.15) and its transition from
the initial to the final equilibrium is observed.

Fig. 1 shows the local density q as function of the dis-
tance r from the droplet center for the equilibrium before
evaporation and for two time periods after onset of evapo-
ration, i.e. after the wrapped droplet has been brought into
the larger box. The calculations were done according to Eq.
(6) by using spherical shells. The local density profiles show
as usual three different regions. The first region is the liquid
phase, the second is the liquid–vapour interface and the
third region is the vapour phase. The density profiles are
shown first because they give an impression about the size
of the liquid droplet and the thickness of the interface. The
local density shows some scattering near the center of the
droplet because the number of particles in the spherical
shells becomes small in approaching the center. Let us first
look on the density profile at the initial equilibrium at
T = 0.80. There, the density in the droplet is ql = 0.74
and in the vapour it is qv = 0.030 as already stated in Sec-
tion 3. For the further discussion of Fig. 1 we must antic-
ipate that the system cools down during evaporation.
Consequently the liquid density should increase, the
vapour density decrease and the liquid–vapour interface
should become thinner. Actually we see that in the second
profile averaged over time steps 6001–8000 after onset of
evaporation the density in the droplet increases to
ql = 0.80 and in the vapour it decreases to qv = 0.0108.
Finally, in the third profile averaged over time steps
15,001–25,000 after onset of evaporation the density in
the droplet increases to ql = 0.82 and in the vapour it
decreases to qv = 0.0106. This last density profile does
not change any more when the simulation run is continued
until 150,000 time steps.

In Fig. 2 the radial drift velocities vD are presented
which have been calculated according to Eq. (11). Shown
is the reduced drift velocity v�D which is related to the phys-
ical quantity vD by v�D ¼ ðm=eÞ1=2 vD. In order to get a feel-
ing for the reduced velocities we note that for a half-sided
MB velocity distribution v�D takes the value v�D ¼
ðð2=pÞT �Þ1=2 which e.g. for T* = 0.8 yields v�D ¼ 0:71; the
ideal gas sound velocity of a monatomic gas at T* = 0.8
is cid� ¼ 1:15. Drift velocity profiles are shown for different
time periods after onset of evaporation with all periods
having a length of 2000 time steps. We note that immedi-
ately after the wrapped droplet has been brought into the
larger box the vapour expands very rapidly with a drift
velocity which comes close to the drift velocity of a half-
sided MB-velocity distribution which could have been
expected. The droplet itself has zero drift velocity. An
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Fig. 2. Reduced radial drift velocity v�D as function of the reduced distance
r/r from the droplet center for different time periods for evaporation of a
wrapped droplet by expansion of the volume (L2/L1 = 1.5). (—d—)
averaged over time steps 1–2000, (—s—) averaged over time steps 2001–
4000, (—.—) averaged over time steps 8001–10,000, (—,—) averaged
over time steps 18,001–20,000 after onset of evaporation.
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Fig. 3. Reduced radial temperature T �
r (—d—) and reduced tangential

temperature T �
t (—s—) as function of the reduced distance r/r from the

droplet center for different time periods for evaporation of a wrapped
droplet by expansion of the volume (L2/L1 = 1.5). (a) Averaged over time
steps 1–2000, (b) averaged over time steps 2001–4000, (c) averaged over
time steps 4001–6000, (d) averaged over time steps 8001–10,000 after onset
of evaporation.
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interesting feature is that at the distance r/r � 7 the drift
velocity has a slight negative value, i.e. the particles in
the liquid–vapour interface move inside. This recoil effect
is in some sense an effect of local momentum conservation
and we remind that in ‘‘Laser-Pellet-Fusion’’ this is the
main effect for getting high pellet densities. In the time per-
iod from 2001 to 4000 time steps there occurs a change in
the drift velocity. The recoil frontier moves a little towards
the droplet center and a larger part of the interface starting
from distance r/r � 6 moves rapidly outside where the par-
ticles find now new free space. At further remote distances
the drift velocity decreases in comparison with that at the
beginning of the evaporation. We explain this by the fact
that particles from the replica box move into the central
box and that by this move the velocities between the outgo-
ing and incoming particles cancel out to some extent in the
calculation of the drift velocity such that this decreases.
The third profile for the time period from 8001 to 10,000
time steps is a continuation of the behaviour found in the
second time period. Finally, in the period from 18,001 to
20,000 time steps the drift velocity tends to zero as a con-
sequence of the fact that the system approaches its new
equilibrium.

After having obtained the radial drift velocity vD it is
possible to calculate the radial temperature Tr, the tangen-
tial temperature Tt and the total temperature T according
to Eqs. (17)–(19). We remind that Eq. (17) requires the
same time averaging interval for Tr and vD; this means that
v2in;r and vin,r are averaged simultaneously during the simu-
lation run. Results for Tr, and Tt are shown in Fig. 3, whilst
the total temperature T is shown in Fig. 4.

First we learn from Fig. 4(a) that the temperature of the
liquid and of the vapour in equilibrium as function of the
distance from the droplet center is rather constant around
the value 0.8, which was achieved by prescribing the total
kinetic energy of the system to be Ekin/e = (3N/2)T* with
T* = 0.8.

Then, evaporation starts and Tr and Tt for the first 2000
time steps are shown in Fig. 3(a), whilst the total tempera-
ture T is given in Fig. 4(b). Looking on Tr we note that
inside the droplet and in the liquid–vapour interface the
radial temperature fluctuates around a value which is
slightly lower than the equilibrium temperature T = 0.8;
here and in the following reduced temperature values are
given. In the vapour phase, however, the radial tempera-
ture decreases down to Tr = 0.52 at the distance r/r = 12.
This decrease had to be expected on the assumption that
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Fig. 4. Reduced total temperature T* (—d—) and corresponding reduced
mean kinetic energy per particle ð2=3Þe�kin (—s—) as function of the
reduced distance r/r from the droplet center for different time periods for
evaporation of a wrapped droplet by expansion of the volume (L2/
L1 = 1.5). (a) Equilibrium, (b) averaged over time steps 1–2000, (c)
averaged over time steps 2001–4000, (d) averaged over time steps 8001–
10,000 after onset of evaporation.
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a half-sided MB distribution function moves outward.
What is not completely understood is the strong increase
of the radial temperature at the boundary of the box. We
conjecture that this is an effect of the particles moving from
the replica into the central box. Looking now on Tt we see
that it shows a similar behaviour as Tr with low values for
r/r between 13 and 16. This is somewhat surprising because
from the work of Lotfi [10] we had expected Tt to remain
near its initial equilibrium value. Anyhow, the findings sug-
gest that there is strong interaction between the velocity
components. The total temperature T is according to
Eq. (20) a linear combination of Tr and Tt, T = 1/3Tr +
2/3Tt, and consequently we find in Fig. 4(b) values of T

lower than 0.6 for r/r between 13 and 15.
In the next time period from 2001 to 4000 time steps,

shown in Fig. 3(b), Tr remains inside the droplet in essence
constant but the minimum of Tr moves into the liquid–
vapour interface. The surprising fact is the increase of Tr

to a value of nearly 1.0 at the distance r/r = 10.5. The tan-
gential temperature Tt shows also one peak and two min-
ima with rather low values for r/r between 9 and 15. The
total temperature T, presented in Fig. 4(c), shows one pro-
nounced maximum around r/r = 9 and two minima
around r/r = 8 and r/r = 12 with T � 0.6.

Results for Tr and Tt in the third period from 4001 to
6000 time steps are shown in Fig. 3(c). Both become nearly
constant at a value between 0.70 and 0.75 inside the droplet
and in the interface. The surprising facts, however, are the
high value of Tr up to 1.0 around r/r = 11 whilst Tt drops
down to 0.5 around r/r = 8 which indicates a rather
dynamic behaviour in the gas phase.

For the period from 8001 to 10,000 time steps results are
given in Fig. 3(d) and Fig. 4(d). The system approaches its
final equilibrium with the temperature being close to
T = 0.70 but with still strong fluctuations in the vapour.
We remind that 0.70 is close to the value 0.703 estimated
above from the conservation of energy.

It is now of some interest to look at the mean kinetic
energy per particle ekin defined in Eq. (13) which is related
to the temperature T via Eq. (21), which in reduced quan-
tities can be rewritten as ð2=3Þe�kin ¼ T � þ ð1=3Þv�2D . Hence,
ekin can already be obtained by combining the drift velocity
from Fig. 2 with the temperature from Fig. 4. For conve-
nience of the reader, we show ekin in the form ð2=3Þe�kin also
in Fig. 4. Trivially, a large difference between both quanti-
ties happens for large values of vD which occur in particular
at the onset of evaporation in the vapour phase. Hence, we
observe the largest differences between ekin and T in
Fig. 4(b).

Finally, we show in Fig. 5 the number of droplet parti-
cles as function of time during the evaporation process cal-
culated according to the Amsterdam definition. We note,
that after the initial equilibration process the droplet con-
sists of about 480 liquid particles. Then during pressure
jump evaporation by increase of the box length with ratio
L2/L1 = 1.5 the number of particles decreases to 405, which
is a decrease by about 16%. The decrease can within statis-
tical uncertainties approximately be described as exponen-
tial with a change to horizontal between 100 and 150 ps
corresponding to 9000–14,000 time steps. But even thereaf-
ter we observe some fluctuations in the particle number
which correlate with the fact that the drift velocity shown
in Fig. 2 is not yet completely zero in the time period from
18,001 to 20,000 time steps.

4.1.2. Simulation results for L2/L1 = 2.0
Starting from L1 = 22.10, L2 = 44.20. The results

obtained for this case are qualitatively similar to those
for L2/L1 = 1.5. We show here only the number of droplet
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Fig. 6. Reduced local density q* as function of the reduced distance r/r
from the droplet center for different time periods for evaporation of a bare
droplet into vacuum. (—d—) initial droplet, (—,—) averaged over time
steps 6001–8000 after onset of evaporation, (—j—) averaged over time
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Fig. 7. Reduced radial drift velocity v�D as function of the reduced distance
r/r from the droplet center for different time periods for evaporation of a
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particles as function of time according to the Amsterdam
definition which is given in Fig. 5. We learn that the initial
decrease in droplet particles is nearly the same for L2/
L1 = 2.0 as for L2/L1 = 1.5 but the decrease lasts longer
for L2/L1 = 2.0. The final number of about 380 droplet
particles is reached after about 300 ps corresponding to
28,000 time steps which is a decrease by about 21%. Again,
the final temperature T = 0.6497 is very close to the value
0.640 estimated above from the conservation of energy.

4.2. Evaporation of a bare droplet

Here, the initial droplet is the sphere which was cut out
from a bulk liquid as described in Section 3. The starting
point there was a NVT simulation of a homogeneous liquid
in a cubic box with periodic boundary conditions for
N = 1372 particles at temperature T = 0.80. The liquid
box length is Ll = 11.97 resulting in a density q = 0.80
which is the saturated liquid density of the full LJ system.
Next, a spherical droplet is created by cutting out the
atoms contained in the largest possible sphere of the liquid
cube which yields 724 ‘‘liquid’’ particles.

This bare spherical liquid droplet with 724 particles
(droplet radius RL = Ll/2 = 5.98) is then put into an empty
box with box length L2 with L2/L1 = 2.0 (L2 = 23.94).
First, the system is thermostated at T = 0.80 for 400 time
steps, thereafter it is treated adiabatically and the expected
behaviour is similar to that obtained above. An estimate of
the temperature T2 in the final equilibrium was made again
on the basis of conservation of energy as above. Because of
the liquid density q = 0.80 the internal energy u(T,q) is not
taken from [16] but rather from the own initial bulk fluid
simulation. The resulting value is T2 = 0.663.

Fig. 6 shows the local density q as function of the dis-
tance r from the droplet center for the equilibrium before
evaporation and for two time periods after onset of evapo-
ration. Again, the system cools down and the liquid density
increases. The profiles are shown for the time steps 6001–
8000 and 15,001–25,000 after onset of evaporation. The
latter density profile does not change any more when the
simulation is continued.

In Fig. 7 the radial drift velocities vD are presented. We
observe a qualitatively similar behaviour as for the evapo-
ration of the wrapped drop with, however, larger values of
the drift velocity. Note that the drift velocity values in the
first time period reach a value of about v�D ¼ 1:00 which is
larger than the value 0.71 resulting from a half-sided MB
distribution at the temperature T = 0.8. This indicates that
the bare liquid droplet with its high density and without
being in equilibrium with is vapour expands more quickly
into the vacuum. One might compare this with the drift
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velocity found by Lotfi [10] who obtained for T = 0.85 a
drift velocity v�D ¼ 0:90, which is also above the drift veloc-
ity 0.73 of the half sided MB distribution for T = 0.85. We
do not observe negative drift velocities at the beginning of
the evaporation but in the course of the time they are found
in the remote gas phase which we understand as dynamical
fluctuations in the vapour.

In Fig. 8 the radial temperature Tr and the tangential
temperature Tt are shown, whilst in Fig. 9 the total temper-
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Fig. 8. Reduced radial temperature T �
r (—d—) and reduced tangential
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t (—s—) as function of the reduced distance r/r from the

droplet center for different time periods for evaporation of a bare droplet
into vacuum. (a) Averaged over time steps 1–2000, (b) averaged over time
steps 2001–4000, (c) averaged over time steps 4001–6000, (d) averaged
over time steps 8001–10,000 after onset of evaporation.
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Fig. 9. Reduced total temperature T* (—�—) and corresponding reduced
mean kinetic energy per particle ð2=3Þe�kin (—�—) as function of the
reduced distance r/r from the droplet center for different time periods for
evaporation of a bare droplet into vacuum. (a) Equilibrium, (b) averaged
over time steps 1–2000, (c) averaged over time steps 2001–4000, (d)
averaged over time steps 8001–10,000 after onset of evaporation.
ature T is presented and the mean kinetic energy per parti-
cle ekin. The qualitative behaviour here is in general the
same as for the evaporation of the wrapped drop shown
in Figs. 3 and 4. There are, however, a few differences that
should be addressed. One observation is that the tempera-
ture in the droplet decreases for the bare droplet in the
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beginning more rapidly than for the wrapped droplet as
can be seen e.g. by comparison of Fig. 8(b) with
Fig. 4(b). We attribute this to the fact that in the wrapped
droplet first the already existing vapour shell expands and
only thereafter molecules will leave the droplet which
requires energy from the droplet. In case of the bare drop-
let, however, the molecules which fill the vacuum have to
leave the droplet and hence the temperature decreases in
the beginning more rapidly. Next, we see from Fig. 9(d)
that for the bare droplet evaporation in the period from
8001 to 10,000 time steps the temperature in the vapour
is thoroughly higher than in the droplet which indicates
that full equilibrium has not yet been achieved. For the
wrapped droplet evaporation we observe from Fig. 4(d)
for the same time period the same average temperature in
the vapour and in the liquid. Moreover, on the basis of
Fig. 9(b) we want to point out the large difference between
the temperature and the corresponding kinetic energy in
the vapour. Finally, we want to point out that there is
again good agreement of the temperature in the liquid from
the simulation found to be T = 0.67 in comparison with the
value T = 0.663 found from the energy balance.

Finally, we show in Fig. 10 the number of droplet parti-
cles as function of time during the evaporation process cal-
culated according to the Amsterdam definition and
according to the Cornell definition. We note, that the initial
droplet consists of 724 liquid particles. According to the
Amsterdam definition, the number of particles decreases
finally to 590, which is a decrease by 19%. According to
the Cornell definition, the number of particles decreases
finally to 620, which is a decrease by 14%. Generally, the
droplet has more particles according to the Cornell defini-
tion. This can be easily understood because particles which
are connected with the center of the droplet only by one
near neighbour are counted by Cornell as belonging to
the droplet whilst in the Amsterdam definition at least four
near neighbours are required.
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Fig. 10. Number of droplet particles Nd as function of time t in
picoseconds for evaporation of a bare droplet into vacuum (1 ps
corresponds to 93 time steps) according to Amsterdam (—d—) and
Cornell definition (—.—).
5. Summary and outlook

In this paper we have first reviewed thoroughly existing
literature on droplets and evaporation. Next, we have
introduced a detailed concept for the description of a drop-
let in a transient process. This includes the definition of the
number of particles Nd belonging to the droplet which is a
time dependent quantity. This concept also explains how to
calculate the hydrodynamic quantities as the density pro-
file, the drift velocity, the radial, the tangential and the
total temperature and the mean kinetic energy per particle
and the relations between these quantities are given. These
hydrodynamic quantities depend in case of a transient pro-
cess on the distance from the droplet center and on the
evaporation time. Then two cases of adiabatic pressure
jump evaporation were studied: the evaporation of a
wrapped droplet and that of a bare droplet into vacuum.
Both cases show some general similarity. In adiabatic pres-
sure jump evaporation the temperature of the droplet has
to decrease which corresponds to approaching the ‘‘tem-
perature at the wet bulb’’. The simulations show that the
final temperatures could be estimated reasonably well from
appropriately chosen equilibrium data by using the first
law of thermodynamics. The real new insights concern
the details about the transition from the initial to the final
equilibrium state and in particular the time scales for these
processes. We believe that it will not be easy to describe this
phenomena by a theory without using molecular dynamics
simulation results.

In several cases we compared our results with those
obtained by Lotfi [10] for the steady-state evaporation
from a plane liquid surface into vacuum. In general there
was reasonable agreement between the findings. One point
for future clarification is the behaviour of the tangential
temperature. Whilst in the steady-state evaporation study
of Lotfi the tangential temperature remained constant
through the interface, it decreases in the vapour phase to
rather low temperatures in case of transient droplet
evaporation.

We believe that the present study gave a first insight into
transient pressure jump droplet evaporation. There remain,
however, many questions to be investigated of which we
want to mention only two. One problem is that our drop-
lets are rather small and one should go to larger droplets
which, obviously, requires a more efficient simulation
methodology. A second problem of some technological
interest is the evaporation of mixture-droplets.
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Akademische Austauschdienst (Austrian Academic Ex-
change Service) and the European Union.
References
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